Discussion 6

2.2.21

(kiefer-Wolfowitz) Suppose (X_1, \dots, X_n) is a sample from population with density

$$f(x,\theta) = \frac{9}{10\sigma}\varphi\left(\frac{x-\mu}{\sigma}\right) + \frac{1}{10}\varphi(x-\mu)$$

where φ is the standard normal density and $\theta = (\mu, \sigma^2) \in \Theta = \{(\mu, \sigma^2) : -\infty < \mu < \infty, 0 < \sigma^2 < \infty\}$. Show that maximum likelihood estimates do not exist, but that $\sup_{\sigma} p(x, \hat{\mu}, \sigma^2) = \sup_{\mu, \sigma^2} p(x, \mu, \sigma^2)$ if, and only if, $\hat{\mu}$ equals one of the numbers x_1, \dots, x_n . Assume that $x_i \neq x_j$ for $i \neq j$ and that $n \geq 2$.

2.2.39

Let X_i denote the number of hits at a certain Web site on day $i, i = 1, \dots, n$. Assume that $S = \sum_{i=1}^{n} X_i$ had a Poisson, $\mathcal{P}(n\lambda)$, distribution. On day n+1 the Web Master decides to keep track of two types of hits (money making and not money making). Let V_j and W_j denote the number of hits of type 1 and 2 on day $j, j = n+1, \dots, n+m$. Assume that $S_1 = \sum_{j=n+1}^{n+m} V_j$ and $S_2 = \sum_{j=n+1}^{n+m} W_j$ have $\mathcal{P}(m\lambda_1)$ and $\mathcal{P}(m\lambda_2)$ distributions, where $\lambda_1 + \lambda_2 = \lambda$. Also assume that $S_1 = \sum_{j=n+1}^{n+m} W_j$ have $\mathcal{P}(m\lambda_1)$ and $\mathcal{P}(m\lambda_2)$ distributions, where $\lambda_1 + \lambda_2 = \lambda$. Also assume that $S_1 = \sum_{j=n+1}^{n+m} W_j$ have $\mathcal{P}(m\lambda_1)$ and $\mathcal{P}(m\lambda_2)$ distributions, where $\lambda_1 + \lambda_2 = \lambda$. Also assume that $S_1 = \sum_{j=n+1}^{n+m} W_j$ have $\mathcal{P}(m\lambda_1)$ and $\mathcal{P}(m\lambda_2)$ distributions, where $\lambda_1 + \lambda_2 = \lambda$. Also assume

2.2.40

Let X_1, \dots, X_n be a sample from the generalized Laplace distribution with density

$$f(x, \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_1 + \theta_2} \exp\{-x/\theta_1\}, & x > 0\\ \frac{1}{\theta_1 + \theta_2} \exp\{x/\theta_2\}, & x < 0 \end{cases}$$

where $\theta_{j} > 0, j = 1, 2.$

- 1. Show that $T_1 = \sum X_i 1(X_i > 0)$ and $T_2 = \sum -X_i 1(X_i < 0)$ are sufficient statistics.
- 2. Find the maximum likelihood estimates of θ_1 and θ_2 in terms of T_1 and T_2 . Carefully check the " $T_1 = 0$ or $T_2 = 0$ " case.