Discussion 10

4.1.2

Assume $X = (X_1, \dots, X_n)$ is an $\text{Exp}(\lambda)$ sample. Consider the hypothesis $H : 1/\lambda = \mu < \mu_0$.

1. Show that the test with critical region

$$\left[\bar{X} \ge \frac{\mu_0}{2n} \chi_{2n,1-\alpha}^2\right]$$

where $\chi^2_{2n,1-\alpha}$ is the $(1-\alpha)$ th quantile of the χ^2_{2n} distribution, is a size α test.

- 2. Give an expression of the power in terms of the χ^2_{2n} distribution.
- 3. Use the central limit theorem to show that $\Phi[\mu_0 z(\alpha)/\mu] + \sqrt{n}(\mu \mu_0)/\mu$ is an approximation to the power of the test in part(a).

3.5.5

Show that the a trimmed mean

$$\bar{X}_{\alpha} = \frac{X_{([n\alpha]+1)} + \dots + X_{(n-[n\alpha])}}{n - 2[n\alpha]}$$

is an empirical plug-in estimate of

$$\mu_{\alpha} = \frac{1}{1 - 2\alpha} \int_{x_{1 - \alpha}}^{x_{\alpha}} x dF(x).$$

Here $\int x dF(x)$ denotes $\int x p(x) dx$ in the continuous case and $\sum x p(x)$ in the discrete case.

4.1.11

In Example 4.1.5, let $\psi(\mu)$ be a function from (0, 1) to $(0, \infty)$, and let $\alpha > 0$. Define the statistics

$$S_{\psi,\alpha} = \sup_{x} \psi(F_0(x)) |\hat{F}(x) - F_0(x)|^{\alpha}$$

$$T_{\psi,\alpha} = \sup_{x} \psi(\hat{F}(x)) |\hat{F}(x) - F_0(x)|^{\alpha}$$

$$U_{\psi,\alpha} = \int \psi(F_0(x)) |\hat{F}(x) - F_0(x)|^{\alpha} dF_0(x)$$

$$V_{\psi,\alpha} = \int \psi(\hat{F}(x)) |\hat{F}(x) - F_0(x)|^{\alpha} d\hat{F}(x)$$

- 1. For each of these statistics show that the distribution under H does not depend on F_0 .
- 2. When $\psi(u) = 1$ and $\alpha = 2$, $V_{\psi,\alpha}$ is called the Cramer-von Mises statistic. Express the Cramer-von Mises statistic as a sum.
- 3. Are any of the four statistics in (a) invariant under location and scale?