Discussion 12

Confidence bounds, intervals and regions

4.5.1

Let X_1, \dots, X_{n_1} and Y_1, \dots, Y_{n_2} be independent exponential $\mathcal{E}(\theta)$ and $\mathcal{E}(\lambda)$ samples, respectively, and let $\Delta = \theta/\lambda$.

- 1. If $f(\alpha)$ denotes the α th quantile of $F_{2n_1,2n_2}$ distribution, show that $[\bar{Y}f(\frac{1}{2}\alpha)/\bar{X}, \bar{Y}f(1-\frac{1}{2}\alpha)/\bar{X}]$ is a confidence interval for Δ with confidence coefficient $1-\alpha$.
- 2. Show that the test with acceptance region $[f(\frac{1}{2}\alpha) \leq \bar{X}/\bar{Y} \leq f(1-\frac{1}{2}\alpha)]$ has size α for testing $H: \Delta = 1$ versus $K: \Delta \neq 1$.

4.6.1

Suppose X_1, \dots, X_n is a sample from a $\Gamma(p, \frac{1}{\theta})$ distribution, where p is known and θ is unknown. Exhibit the UMA level $(1 - \alpha)$ UCB for θ .

Frequentist and Bayesian formulations

4.7.1

- 1. Show that if θ has a beta, $\beta(r,s)$, distribution with r and s positive integers, then $\lambda = \frac{s\theta}{r(1-\theta)}$ has the F distribution $F_{2r,2s}$.
- 2. Suppose that given $\theta = \theta$, X has a binomial, $\mathcal{B}(\setminus, \theta)$, distribution and that θ has beta, $\beta(r, s)$ distribution with r and s integers. Show how the quantiles of the F distribution can be used to find upper and lower credible bounds for λ and for θ .

Prediction intervals

4.8.2

Let X_1, \dots, X_{n+1} be i.i.d. as $X \sim F$, where X_1, \dots, X_n are observable and X_{n+1} is to be predicted. A level $(1 - \alpha)$ lower(upper) prediction bound on $Y = X_{n+1}$ is defined to be a function $\underline{Y}(\overline{Y})$ of X_1, \dots, X_n such that $P(\underline{Y} \leq Y) \geq 1 - \alpha$ $(P(Y \leq \overline{Y}) \geq 1 - \alpha)$.

- 1. If F is $N(\mu, \sigma_0^2)$ with σ_0^2 known, give level (1α) lower and upper prediction bound for X_{n+1} .
- 2. If F is $N(\mu, \sigma^2)$ with σ^2 unknown, give level (1α) lower and upper prediction bound for X_{n+1} .
- 3. If F is continuous with a positive density f on (a,b), $-\infty \le a < b \le \infty$, give level $(1-\alpha)$ distribution free lower and upper prediction bounds for X_{n+1} .