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2.1.1 Let Ni, No, N3 be the number of individuals in the three different types, respectively. Note that
Ni + Ny + N3 = n. The corresponding probabilities are 62,20(1 — 0), (1 — 0)2.
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(c) BE(X)=p3—p1=(1-0)%>—0%=1-20. Apply the mothod of moment,
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2.1.3 If X ~ B(a1,a9), B(X) = —1  B(X?) = ai(on +1)
’ ’ ay + oo’ (o1 + a2)(ag + a2 + 1)

Let i1 = (3 Xi)/n, fiz = (3 X?)/n. The method of moments estimates of (a1, as) is given by
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2.1.5 Xy,---, X, ~ ii.d. Bernoulli(f).
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V(HOve) = E@ow(Xv 0) =

V(6p,0) = 0 = 6 = 6y, so 6y is the unique solution and @ is the estimating equation. Solving
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(X, 0) =0 to get = S/n.
2.1.17 The best linear predictor is given by

_ Cov(Y,Z) E(YZ)-E(XY)E(Z)
YT Var(2) T E(22) = (EZ)?

a, = E(Y) — b E(Z).

The method of moment estimate for a; and by can be obtained by pluging in the sample moments,
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2.2.1 The constrast used in this problem is
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2.2.2 Assume Pr(Z; = z,,Y; = yi):%, t=1,---,n. Then,

E(Z)=2Z, E(Y)=Y,
Var(Z) = B(Z — 2)? = % S (% - 2)?

From Thm 1.4.3., the best linear predictor is Y = a + bZ, where

2.2.16 (a)

Cov(Y, Z Zi— )Y, -Y _ _
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0 is the MLE of 0, X
= L.(0) > L,(6%), VOe€O.
n = h(0) is 1-1,
= Lo(h™(n) = plz, 1)
Then for any n* = h(f) € h(0),

p(x, h(0)) = La(0) > Ly (67)) = pl, ")

Therefore, h(0) is the MLE of .

The maximum likelihood estimator for w , if exists, is defined as

w = argsupsup{l(0,x) : 0 € 0,¢(0) = w}
weN

Here we treat h(w) = sup{l(f,x) : 0 € ©,¢q(f) = w} as a function of w. Since ¢ is “onto”,
V' € Q, 30" € O s.t.q(f') = . Because 6 is the maximizer of I(6, ), 1(,2) > I(#',z). This
means k(@) > h(w'). Therefore, MLE for w exists and & = ¢(f) is a maximizer.

Remark: when ¢ is not “onto”, for some w” € €, we cannot find 6” € © such that ¢(0") = w".
Therefore, the set {I(f,z) : 0 € ©,¢(0) = "} is not well defined. Thus we cannot maximize
the function h(w) as w runs over the whole set of .

2.2.22 The likelihood of hypergeometric distribution is given by

WG _ . vV
(N) (b—x)(N—b—n+)!

n

Ly (b) =

where ¢ is some constant which doesn’t depend on b.
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Since (b+1—x)(N —b) > 0,
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This shows that likelihood function is monotone increasing when b < X — 1 and decreasing

when b > w — 1. The global maximizer b satisfies:

L(b{—l;X)<17 l;/(b;X) 21:>X(N+1)—1SBSX(N+1).
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Therefore,

BMLE = [X(N—Fl)} if W is not an integer,

n
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byLe = (N +1) or (N+1) -1 it XD 4o an integer.
n n

Note that L(X(]XLH);X) = L(w —1;X)if w is an integer.



