STAT610 - HWK Solution 10

4.1.5 Let F_{T,θ_0} be the CDF of T under $H: \theta = \theta_0$. By Proposition 4.1.2, the *p*-value is given by

$$p = \alpha(t) = P_{\theta_0}(T > t) = 1 - F_{T,\theta_0}(t)$$

Since $F_{T,\theta_0}(t) \sim \text{Unif}(0,1), p \sim \text{Unif}(0,1).$

4.1.6 By 4.1.5, $\alpha(T_1), \dots, \alpha(T_r) \sim i.i.d.$ Unif(0, 1) iid,

$$\Rightarrow -\log \alpha(T_1) \cdots -\log \alpha(T_r) \sim Exp(1) \sim \Gamma(1,1) \quad \text{iid}$$
$$\Rightarrow \sum_{j=1}^r (-2\log \alpha(T_j)) = -2\sum_{j=1}^r \log \alpha(T_j) \sim \Gamma(n,1/2) \sim \chi_2^2$$

4.2.5 It is equivalent to do a hypothesis test

$$H: (X,Y) \sim P_0 = N(0,0,1,1,0.6)$$
 versus $K: (X,Y) \sim P_1 = N(1,1,1,1,0.6).$

Suppose T(X, Y) and c minimize $\max\{P_0(T \ge c), P_1(T < c)\}$. Let $\alpha = P_0(T \ge c)$. By the definition of MP test, any size α MP test also minimizes $\max\{P_0(T \ge c), P_1(T < c)\}$.

- First, find an MP level α test. Let

$$L = f(x, y; P_1) / f(x, y; P_0) = \exp\left(\frac{x + y - 1}{1 + \rho}\right).$$

By N-P Lemma, $\varphi_k = I(L \ge k) = I(X + Y \ge c)$ with appropriate k and c is an MP size α test.

- Second, determine α such that $\max\{P_0(T \ge c), P_1(T < c)\}$ is minimized. Let T = X + Y, $T \sim N(0, 3.2)$ under P_0 and $T \sim N(2, 3.2)$ under P_1 ,

$$P_0(T \ge c) = P_0\left(\frac{X+Y}{\sqrt{3.2}} \ge \frac{c}{\sqrt{3.2}}\right) = 1 - \Phi\left(\frac{c}{\sqrt{3.2}}\right) = \Phi\left(-\frac{c}{\sqrt{3.2}}\right)$$
$$P_1(T < c) = P_1\left(\frac{X+Y}{\sqrt{3.2}}\right) < \frac{c-2}{\sqrt{3.2}} = \Phi\left(\frac{c-2}{\sqrt{3.2}}\right)$$
$$T \ge c) \quad P_1(T < c)$$
 is minimized when $\Phi\left(-\frac{c}{\sqrt{3.2}}\right) = \Phi\left(\frac{c-2}{\sqrt{3.2}}\right)$

 $\max\{P_0(T \ge c), P_1(T < c)\} \text{ is minimized when } \Phi\left(-\frac{c}{\sqrt{3.2}}\right) = \Phi\left(\frac{c-2}{\sqrt{3.2}}\right) \Rightarrow c = 1.$

Therefore, we obtained the optimal rule with statistic T(X, Y) = X + Y and critical value c = 1.

- **4.2.7** Assume φ is an MP level α test, $0 < \alpha < 1$.
 - To prove $E_1\varphi(X) \ge \alpha$, consider a randomized test $E_1\delta(X) = \alpha$, in other words, randomly reject H_0 with probability α . It is a size α test, so $E_1\varphi(X) \ge E_1\delta(X) = \alpha$.
 - If $E_1\varphi(X) = \alpha$. Then $\delta(X)$ is also an MP test. By N-P Lemma, for $\theta = \theta_0$ and $\theta = \theta_1$,

$$P_{\theta}[\delta(X) \neq \varphi_k(X), L(X, \theta_0, \theta_1) \neq k] = 0$$
(1)

where $\varphi_k(X)$ is a size α likelihood ratio test. Since $\delta(X) = \alpha \neq 0$ or 1,

$$P_{\theta}[\delta(X) = \varphi_k(X), L(X, \theta_0, \theta_1) \neq k] = 0.$$
⁽²⁾

Combine (1) and (2),

$$P_{\theta}[L(X,\theta_0,\theta_1) \neq k] = 0$$

Therefore, $p(X, \theta_1) = kp(X, \theta_0)$ with probability 1. By $\int p(x, \theta_1) dx = \int p(x, \theta_0) dx = 1$,

$$k = \int kp(x,\theta_0)dx = \int p(x,\theta_1)dx = 1.$$

- If
$$p(\cdot, \theta_0) = p(\cdot, \theta_1)$$
, then $E_1\varphi(X) = E_0\varphi(X) = \alpha$.

4.3.1 (a) $X_1, \dots, X_n \sim \text{Poisson}(\theta), \ p(x; \theta) = \frac{e^{n\theta}\theta^{\sum x_i}}{\prod x_i!}.$ For $\theta_1 < \theta_2$,

$$\frac{p(x,\theta_2)}{p(x,\theta_1)} = e^{-n(\theta_2 - \theta_1)} \left(\frac{\theta_2}{\theta_1}\right)^{\sum x_i}$$

then $p(x, \theta_2)/p(x, \theta_1)$ is increasing in $T = \sum X_i$. This is a MLR family in T. By theorem 4.3.1, A UMP test is of the form $T \ge c$.

- (b) Since $T = \sum X_i \sim \text{Poisson}(n\theta_0)$ under $\theta = \theta_0$, $\alpha = P_{\theta_0}(T > c)$. Therefore, α only takes values from $\{P_{\theta_0}(T \ge n) : n = 0, 1, 2, \cdots\}$.
- (c) Need the table of Poisson distribution.