Quantitative Trait Loci (QTL) Related References
These are support references for QTL theory and methods.
- Beran R (2003)
The impact of the bootstrap on statistical algorithms and
theory.
Statist Sci 18: 175-184.
[doi:10.1214/ss/1063994972]
- Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data via the EM algorithm.
J Roy Stat Soc B 39: 1-38.
[Paper]
- Hannan EJ, Quinn BG (1979)
The determination of the order of an autoregression.
J Roy Statist Soc B 41: 190-195.
[Paper]
- Kohn R, Smith M, Chan D (2001)
Nonparametric regression using linear combinations of basis
functions.
Statist and Comput 11: 313-322.
[doi:10.1023/A:1011916902934]
- Manly BFJ (1997)
Randomization, Bootstrap and Monte Carlo
Methods in Biology, 2nd ed, Chapman & Hall/CRC Press.
[Abstract]
- Meng XL, Rubin DB (1993)
Maximum likelihood estimation via the ECM algorithm: A general framework.
Biometrika 80: 267-268.
[doi:10.1093/biomet/80.2.267]
- Nott DJ, Kuk AYC, Duc H (2002)
Efficent sampling schemes for Bayesian MARS models with many
predictors.
- Titterington DM, Smith AFM, Markov UE (1985)
Statistical Analysis of Finite Mixture Distributions.
Wiley, New York.
- Akaike H (1969)
Fitting autoregressive models for prediction.
Ann Inst Statist Math 21: 243-247.
[Paper]
- Breiman L, Freedman D (1983)
How many variables should be entered in a regression?
J Amer Statist Assoc 78: 131-136.
[doi:10.2307/2287119]
- Chipman H (2006)
Prior distributions for Bayesian analysis of screening
experiments.
Screening: Methods for Experimentation in Industry, Drug
Discovery, and Genetics,
Dean A, Lewis SM, Editors: 235-267.
[Paper]
- Chipman HA, George EI, McCulloch RE (2001)
The practical implementation of Bayesian model selection.
IMS Lecture Notes: Model Selection 38.
[Paper]
- Clyde M, George EI (2004)
Model uncertainty.
Statist Sci 19: 81-94.
[doi:10.1214/088342304000000035]
- Dellaportas P, Forster JJ, Ntzoufras I (2000)
Bayesian variable selection using the Gibbs sampler.
Generalized Linear Models: A Bayesian
Perspective,
Dey DK, Ghosh S, Mallick B, eds.
New York: Marcel Dekker, 271-286.
[Paper]
- Efron B (1986)
Why isn't everyone a Bayesian?
Amer Statist 40: 1-5.
[Paper]
- Gelman A (2004)
Exploratory data analysis for complex models.
J Comp Graph Statist 13: 755-779.
[doi:10.1198/106186004X11435]
- Gelman A (2005)
Analysis of variance--why it is more important than ever.
Ann Statist 33: 1-53.
[doi:10.1214/009053604000001147]
- Gelman A (2008)
Objections to Bayesian statistics (with discussion).
Bayesian Analysis 3: 445-450.
[doi:10.1214/08-BA318 | Discussion]
- Gelman A, Van Mechelen I, Verbeke G, Heitjan DF, Meulders M
(2005)
Multiple imputation for model checking: completed-data plots
with missing and latent data.
Biometrics 61: 74-85.
[doi:10.1111/j.0006-341X.2005.031010.x]
- Ghosh D, Chen W, Raghunathan T (2006)
The false discovery rate: a variable selection perspective.
J Statist Plan Infer 136: 2668-2684
[doi:10.1016/j.jspi.2004.10.024]
- Lu F, Keles S, Wright S, Wahba G (2005)
Framework for kernel regularization with application to protein clustering.
PNAS 102: 12332-12337.
[Paper]
- McLachlan GJ, Basford KE (1988)
Mixture Models: Inference and Applications to Clustering.
Marcel Dekker, New York.
- Miller AJ (1990)
Subset Selection in Regression.
Chapman and Hall, London.
- Ntzoufras I (1999)
Aspects of Bayesian model and variable selection using MCMC.
Dept Statistics, Athens U of Economics and Business.
[Paper]
- Schwarz G (1978)
Estimating the dimension of a model.
Ann Statist 6: 461-464.
[Paper]
- Shibata R (1981)
An optimal selection of regression variables.
Biometrika 68: 45-54.
[doi:10.1093/biomet/68.1.45]
- Shibata R (1984)
Approximate efficiency of a selection procedure
for the number of regression variables.
Biometrika 71: 43-49.
[doi:10.1093/biomet/71.1.43]
- Yang X, Belin TR, Boscardin WJ (2005)
Imputation and variable selection in linear regression models
with missing covariates.
Biometrics 61: 498-506.
[doi:10.1111/j.1541-0420.2005.00317.x]
- Zhang D, Lin X (2003)
Hypothesis testing in semiparametric additive mixed models.
Biostatistics 4: 57-74.
[Paper]
- Baum LE, Petrie T, Soules G, Weiss N (1970)
A maximization technique occurring in the statistical analysis of
probabilistic functions of Markov chains.
Ann Math Stat 41: 164-171.
[Paper]
- Carlin BP, Chib S (1995)
Bayesian model choice via Markov chain Monte Carlo.
J Roy Statist Soc B57: 473-484.
[Paper]
- Cowles MK, Carlin BP (1996)
Markov chain Monte Carlo convergence diagnostics: a comparative
review.
J Amer Statist Assoc 91: 883-904.
[doi:10.2307/2291683]
- Gelfand AE, Hills SE, Racine-Poon A, Smith AFM (1990)
Illustration of Bayesian inference in normal data models
using Gibbs sampling.
J Amer Statist Assoc 85: 972-985.
[doi:10.2307/2289594]
- Godsill SJ (2001)
On the relationship between Markov chain Monte Carlo methods for model uncertainty.
J Comp Graph Statist 10: 230-248.
[Paper]
- Green PJ (1995)
Reversible jump Markov Chain Monte Carlo computation and Bayesian model
determination.
Biometrika 82: 711-732.
[doi:10.1093/biomet/82.4.711]
- Ishwaran H, Rao JS (2005)
Spike and slab variable selection: Frequentist and Bayesian strategies.
Ann Statist 33: 730-773.
[doi:10.1214/009053604000001147]
- Rabiner LR (1989)
A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE 77: 257-286.
[Paper]
- Richardson S, Green PJ (1997)
On Bayesian analysis of mixtures with an unknown number of components.
J Roy Stat Soc B 59: 731-792.
[Paper]
- Rosenthal JS (2007)
AMCMC: An R interface for adaptive MCMC.
Comp Statist Data Anal 51: 5467-5470.
[doi:10.1016/j.csda.2007.02.021]
- Cook SR, Gelman A, Rubin DB (2006)
Validation of software for Bayesian models using posterior
quantiles.
J Comp Graph Statist 15: 675-692.
[doi:10.1198/106186006X136976 | Software]
- Gentleman R, Temple Lang D (2007)
Statistical Analyses and Reproducible Research
J Comp Graph Statist 16: 1-23.
[Paper]
- Kerman J, Gelman A (2004)
Fully Bayesian computing.
[Paper]
- Ntzoufras I (2002)
Gibbs variable selection using BUGS.
J Statist Soft 7: 7.
[Paper | Software]
- Sturtz S, Ligges U, Gelman A (2005)
R2WinBUGS: A package for running WinBUGS from R.
J Statist Soft 12: 3.
[Paper]
Return to QTL References.
Brian Yandell
(yandell@stat.wisc.edu)